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Abstract

We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual
system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an
intriguing challenge, both from a physiological and a computational perspective. Previous research has characterized
higher-order neurons within the fly brain, known as ‘small target motion detectors’ (STMD), that respond robustly to moving
features, even when the velocity of the target is matched to the background (i.e. with no relative motion cues). We recorded
from intermediate-order neurons in the fly visual system that are well suited as a component along the target detection
pathway. This full-wave rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of opposite
signs (suggesting separate ON and OFF channels) and fast adaptive temporal mechanisms, similar to other cell types
previously described. From this physiological data we have created a numerical model for target discrimination. This model
includes nonlinear filtering based on the fly optics, the photoreceptors, the 1st order interneurons (Large Monopolar Cells),
and the newly derived parameters for the RTC. We show that our RTC-based target detection model is well matched to
properties described for the STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model output shows
that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear
‘matched filter’ to successfully detect most targets from the background. Importantly, this model can explain this type of
feature discrimination without the need for relative motion cues.
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Introduction

Certain flies (as well as other kinds of insects) detect and track

small moving objects as they engage in rapid pursuits, demon-

strating the capability to discriminate between targets (e.g. other

flies) and an often cluttered, moving background [1,2]. This is an

especially challenging task considering that the fly compound eye

limits visual resolution to ,1u [3].

Neurons sensitive to (and in some cases selective for) small

moving targets have been described in a variety of insect species

[4–7]. Recent intracellular investigations have more carefully

characterized a number of target-selective neurons in the optic

ganglia of the hoverfly [8–10]. These ‘small target motion

detectors’ (STMDs) were found to be exquisitely selective for

small targets subtending no more than a few degrees of the visual

field, equivalent to just one or two ‘pixels’ of the compound eye.

The receptive fields of STMDs vary in size, with some extending

just a few degrees, to those that encompass the whole eye

hemifield. The target response may vary in magnitude across this

region, however the size selectivity is independent of the target

location [8] or the size and shape of the receptive field [9].

STMDs respond to targets moving relative to a background, in

many cases when the background itself is moving [9]. Concep-

tually, it would seem likely that neural mechanisms required for

such a task involve segregation of the motion of the target from the

motion of the background. Surprisingly, whilst some STMDs

exhibit a suppressed response in the presence of background

motion, a subset respond robustly even when the targets move at

the same velocity as the background, i.e. with no relative motion cues

[9]. However, the response to wide-field background motion alone

elicits no response. This implies that the spatial statistics of small

targets, with respect to the background, form an important cue for

discrimination, regardless of any additional role that may be

played by other motion cues [9].

Computational models for target discrimination
Understanding the computation that underlies small target

selectivity and rejection of background motion presents a daunting

challenge. Some models for target discrimination rely on inhibitory

feedback of wide-field motion signals to localized motion detectors

[11,12], which may provide an explanation for small target

selectivity, but would lead to inhibition by background motion.

Another model, for what some thought at the time was the target

selectivity of a higher order locust neuron [13], has lateral inhibitory

interactions around a centre unit. This model was based on cells

responding transiently to both contrast increments (ON channel) and

contrast decrements (OFF channel) in a full-wave rectified manner.

A lateral unit, derived from the local signal spread of these channels,

was hypothesized to mediate the inhibitory interactions on these

centre units [14]. Here we examine and model a similar neuron type

we refer to as the ‘Rectifying Transient Cell’ (RTC). We show that

fast temporal adaptation and lateral inhibitory connections,
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characteristic properties of RTCs, could provide the basis for an

alternative model for small target selectivity, robust against wide-field

background motion.

Full-wave rectifying transient neurons
Extracellullar recordings in the first optic chiasm between 2nd

and 3rd order interneurons of the fly brain (between the lamina

and medulla), first showed the presence of ‘‘on-off’’ cells (Arnett

fibers) with full-wave rectification [15,16]. Surprisingly, these cells

were later re-examined and shown to adapt independently to

luminance changes, dependent on the polarity (increment or

decrement) of the change [17]. This independent adaptation was

also observed in medullary neurons in the locust [18]. These locust

neurons had a ‘breakthrough response’ when stimulated with a

pulse of the same polarity but greater contrast than the prior

adaptor. The authors hypothesized that this nonlinear adaptation

might enhance responses to the contrasting edges of visual

features, whilst rejecting lower contrast ‘‘textual detail’’ [14,19].

Spatial antagonism observed in the LMC, an earlier 1st order

interneuron in the lamina, appears to utilize inhibitory interactions

between nearest neighbor receptors [20]. However in the ‘on-off’

cell experiments [21], separated pulses (5u) revealed antagonism on

a larger spatial scale, equivalent to several facets of the compound

eye. The authors proposed a model where rectification occurs after

lateral inhibition of the subunits (Figure 1A), however, unless the

inhibitory influence of neighbors is excessively strong, it is difficult

to explain why the summing of spatially separated rectified signals,

responding to pulses of ‘like’ sign, should produce an inhibition of

the overall response as was observed [21]. These results lead us to

propose the possibility of a second-order of local inhibitory

Figure 1. Model Overviews. (A) Model of the ‘on-off’ unit as described by Jansonius and van Hateren [21]. The transient subunits exhibit fast
adaptation and lateral inhibition before full-wave rectification and spatial pooling. (B) Our proposed version of rectifying transient cells where fast
adaptive units are segregated into ON and OFF channels via half-wave rectification. Each polarity channel laterally inhibits one another before spatial
pooling. (Ci) The detailed block diagram of the elementary small target motion detector (ESTMD) model. Early visual processing (photoreceptors,
Large Monopolar Cells (LMC) and amacrine cells) is modeled with optical blurring (LPF1), a nonlinear compressive transform (Lipetz function) with an
adaptive mid-point parameter, and spatiotemporal band-pass filtering (LPF2&3, R-HPF1&2). The signal is separated into independent channels
(responding to contrast increments and decrements respectively) via further high-pass filtering (HPF3) and half wave rectification (HW-R). Each
channel exhibits fast adaptation, implemented via the FDSR inhibition (see Cii). The channels are separately inhibited by a delayed (LPF4) signal
derived from surrounding channels of the same type. The strength of this surround inhibition is determined by the free gain parameter INH. To
implement sensitivity to dark targets, the OFF channel is delayed (LPF5) and then recombined with an undelayed ON channel in either a linear (S) or
quadratic (X) manner. (Cii) Fast depolarization, slow repolarization (FDSR). If the input signal is ‘depolarizing’ (positive temporal gradient), a first-order
low pass filter with a small time constant (LPFfast) is used, otherwise for a ‘repolarizing’ signal (negative gradient) a larger time constant is applied
(LPFslow). The resulting processed signal represents an ‘adaptation state’ which then subtractively inhibits the unaltered pass-through signal. [LPF1

Gaussian blur (half-width 1.4u); LPF2 t= 2.5 ms; R-HPF1&2&3 t= 40 ms, 30% DC; LPF3&4 t= 2 ms; LPF5 t= 25 ms; LPFfast t= 1 ms; LPFslow t= 100 ms;
INH = 3 (free parameter)].
doi:10.1371/journal.pone.0002784.g001

Bio-Inspired Target Detection

PLoS ONE | www.plosone.org 2 July 2008 | Volume 3 | Issue 7 | e2784



interactions between ‘like’ ON channels and OFF channels, before

they are recombined via spatial pooling (Figure 1B).

Rectifying Transient Cells in the target detection pathway
We have developed a model for small target motion detection

inspired by the properties of the higher order STMDs, and

including a RTC-type component. We validate key stages of the

model with intracellular recordings of the RTC in the fly

(Calliphora stygia) medulla and with published physiological data.

We investigate the temporal responsiveness of the RTC and obtain

filtering parameters for the STMD model. We show that the

properties of independent adaptation and lateral inhibitory

interactions, as observed in ‘on-off’ cells and the RTC, are well

suited for a role in target detection. We show that the

spatiotemporal signature associated with the motion of a small

feature is the passing of two contrast boundaries of opposite

polarities (i.e. due to the leading and trailing edges), with limited

spatial extent – which induces an excitatory response little affected

by centre-surround inhibition or adaptation of the presumed ON

and OFF channels. We include a stage for the recombination of

ON and OFF channel signals, as yet untested by electrophysio-

logical experiments, which enhances small target sensitivity.

Finally, we show that this model leads to enhanced target

discrimination, even when there are no relative motion cues

between target and background.

Methods

Modeling
A model for an elementary small target motion detector (ESTMD)

was created in Simulink (Mathworks), with image preparation and

analysis tools programmed in Matlab (Mathworks). The term

‘elementary’ refers to a single unit that would be pooled to emulate

the ‘position invariant’ nature of an STMD neuron [8]. Each major

component in the model (Figure 1C) is inspired by key stages in

visual processing and will be discussed in detail later.

We do not attempt to emulate biophysical properties of cellular

dynamics, e.g. compartmental modeling, nor are we developing a

neural network representation. Rather we are building a

numerical model based on linear and nonlinear spatial and

temporal filtering and typical feed-forward signal processing

methods. This approach allows for the model to be implemented

in engineering applications.

The ESTMD model was tested using a series of panoramic

images (Figure 2) (see Input Imagery) animated at a high temporal

sample rate (5 kHz) to simulate continuous time. A 565 array of

local ‘photoreceptor’ inputs was used to evaluate the response of

the central ESTMD (Figure 3). Because the input imagery is a

circular panorama, continuous motion allows estimation of the

output of this ESTMD for all horizontal locations on the image.

The region of interaction was shifted vertically in 1u increments to

build up a 2 dimensional representation of ESTMD outputs in a

raster fashion (Figure 3). The stimulus was rotated at 90u/s (within

the optimal range for STMD neurons [8]) for two complete

revolutions, with the first discarded, to avoid start-up transients.

Input imagery
To test for robustness of the model for discriminating targets

embedded in visual clutter, a series of three panoramic images

(Figure 2B–D), with a 72u vertical extent, were acquired from

natural habitats [22]. The 8-bit images were 20486410 pixels.

Although original panoramas were sampled as RGB, all

simulations used the green channel only in order to approximate

the spectral sensitivity of the fly photoreceptors that subserve

Figure 2. Input Images and Optical Blurring. Four panoramic images
are used as model inputs to test target discrimination. The images display
natural statistics with luminance intensity inversely proportional to spatial
frequency [24]. Image (A) is composed of the average magnitude and
phase of 13 natural images [22]. Image (B) includes several man-made
structural elements. Image (C) is relatively sparse, whilst (D) is a highly
cluttered scene. The images are panoramic and extend 72u vertically. They
have a resolution of 20486410 pixels, with the ‘green’ channel of the RGB
image (depicted here in grayscale) retained for further processing,
approximating the spectral sensitivity of motion detection mechanisms in
the fly visual system[23]. The row section highlighted in image (D)
corresponds to the data traces of Figure 9. Images (E) and (F) are the
optically blurred versions of images (A) and (D), including 20 pseudo-
randomly scattered targets (1.6u61.6u) in each image.
doi:10.1371/journal.pone.0002784.g002

Figure 3. Panorama Rotation. A single model output has 25
‘photoreceptors’ as inputs, each with 1u sampling separation (inter-
ommatidial angle), thus represents a 5u65u grid. The values represent-
ing luminance intensities at these locations vary over time as the
panorama image is rotated past the ESTMD at 90u/s. Linear
interpolation between pixels in the horizontal spatial domain results
in higher temporal resolution (sampling at 5 kHz). There is an ESTMD at
each degree separation down the vertical column, therefore 72 in all,
each with overlapping, feed-forward, receptive fields.
doi:10.1371/journal.pone.0002784.g003

Bio-Inspired Target Detection
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motion processing [23]. A fourth image (Figure 2A) was obtained

by combining the three natural images with ten others and

averaging their phase and magnitude in the frequency domain

[22]. This combined image, whilst displaying a typical power

spectrum, lacks hard edge-like contours found in many (but not all)

natural images. This image acts as a control with respect to

potential phase congruency components underlying motion

detection mechanisms. The first stage of modeling emulates fly

optics via spatial blurring (see Results: Photoreceptors), therefore

reducing hard edges, including those of the targets. The Gaussian

blurring is shown for two images (Figure 2E, 2F) with 20 scattered

1.6u61.6u targets embedded. The targets effectively have varying

contrasts, and are difficult to discern, revealing the challenging

nature of this target discrimination task. All four of the images had

power spectra showing an approximately 1/f dependence on

spatial frequency f, which is typical of natural images [24,25].

We created a second set of images, identical to the first, but into

which black targets (1.6u61.6u) were pseudo-randomly distributed,

with each target centered on an ommatidial row. To improve

computational efficiency, we inserted twenty such targets into each

image. We maintain a 70u horizontal separation between the targets

and a 6u vertical separation. This limits spatiotemporal interactions

between the targets at any stage of the modeling, with a larger (in

effect longer) horizontal separation required, as this becomes the

resultant temporal domain due to the panorama being rotated

horizontally (influences are of longer-term adaptive components, e.g.

photoreceptor dynamics). Because these targets become a feature of

the image (i.e. there is no relative motion between targets and

background) these simulations test the most demanding condition

observed in physiological STMD experiments [9].

Model simulation was run with a single control trial using the

original panoramas without targets and 26 trials (for each image)

in which different pseudo-random target distributions were used,

allowing us to evaluate responses from a total of 26620 target

locations, across four images.

To analyze how effectively targets are discriminated a spatial

image of the model output, at varying stages of processing, was

reconstructed from the vertical columnar units, and binning of the

horizontal time dimension (back into an equivalent 1u spatial

domain). Target locations are determined taking the non-uniform

lag into account. We determine ‘hits’ (above threshold output

corresponding to target location) and ‘false positives’ (above

threshold outputs not corresponding to target locations). This

categorization is done for each image (Figure 2), at each processing

stage, and across varying model output thresholds. By varying this

threshold and plotting ‘hit’ rate (relative to total targets present in

the scene) versus number of ‘false positives’, we constructed

Receiver Operating Characteristic (ROC) curves.

In addition to the experiments using natural images, basic

characteristics of the ESTMD were evaluated using a similar stimulus

paradigm into which targets of varying contrast, height and velocity

were animated against bright or mean luminance backgrounds.

Physiology
Flies (Calliphora) were either caught in the wild or reared in the

laboratory under a natural day/night cycle. Insects were

immobilized with wax. The back of the head was shaved, and a

small hole in the cuticle was removed. Air sacs and other tissue

were removed to provide clear access to the medulla. The brain

was immersed with a Ringer solution: NaCl (130 mM), KCl

(6 mM), MgCl2 (4 mM), CaCl2 (5 mM), with HEPES buffer at

pH 7.0. Osmolarity was adjusted to 450 mM with the addition of

sucrose. The fly was positioned to view a 200 Hz CRT monitor,

mean luminance of 100 cd m22. The visual stimuli were

programmed in Python, using the VisionEgg stimulus software

(www.visionegg.org).

Micropipettes were pulled from 1 mm (O.D.) thick walled

alumina-silicate glass capillaries (SM100F-10, Harvard Apparatus

Ltd.), on a Sutter Instruments P-97 puller, and filled with 2 M KCl

or 2 M potassium acetate. Electrode resistances were typically

120–150 MV.

A wide-field, square-wave, flicker stimulus (1 Hz) induced

opposing polarity potentials within the extracellular space.

Intracellular recording from the RTC was identifiable by: a) a

drop to resting membrane potential of approximately 260 mV; b)

the full-wave rectification of the signal; c) depolarizing responses of

10–15 mV (graded), with ,10 mV spikelets. The data were

sampled at 5 kHz during acquisition, using a National Instruments

16-bit ADC. Data analysis was performed offline with Matlab.

Results

We consider here in detail both the major stages of our model,

and compare their outputs with known biological counterparts.

Photoreceptors
After target insertion we low-pass filter input images (Gaussian,

half-width 1.4u) to mimic the spatial blur of fly optics (Figure 1C,

LPF1) [26]. Luminance values sampled by ‘‘photoreceptors’’ at 1u
spatial separation approximately match the resolution of Eristalis

[27] and Calliphora [3]. For computational efficiency, we use

rectangular sampling in a 5u65u receptor patch, rather than

emulating the hexagonal distribution of ommatidia (Figure 3).

Photoreceptor transduction transforms the input luminance to

membrane potential in a roughly logarithmic manner around an

operating point determined by stimulus history [20,28,29]. Our

model mimics this effect by transforming luminance values with a

Lipetz function (Equation 1), with the exponent u set at 0.7, as in

our earlier modeling of fly motion detection [30].

xu

xuzxu
o

ð1Þ

To elaborate this Lipetz nonlinearity we include an ‘adaptation

state’ with the mid-level parameter x0 set as a first-order low-pass

filtered version of x (time constant (t) of 750 ms). Fly photorecep-

tor responses are temporally limited, with a corner frequency of

40–70 Hz [31]. To capture this, our modeling employs a static

low-pass filter with corner frequency of 60 Hz (Figure 1C, LPF2)

following the Lipetz transform.

Large Monopolar Cells
While the role of LMCs in motion processing has been

controversial, most research suggests that they are the ideal input

to this pathway [32–34]. The LMCs have been shown to remove

redundancy [20] and maximize information transmission [35] and

they work as spatiotemporal contrast detectors, suitable for feature

detection. Therefore, we implement an LMC-like spatiotemporal

band-pass filtering on the photoreceptor output (Figure 1C).

Spatial antagonism can be modeled as a recurrent inhibitory

network (direct LMC to LMC inhibition), however, surround

inhibition in a feed-forward manner, via a proposed surround

‘amacrine cell’ is equally plausible and is in accord with recent

research on fly retina-lamina circuitry [36]. Our modeling

comprises an amacrine cell that samples the surrounding nine

photoreceptor outputs and subtractively inhibits the centre LMC

(leaving a 30% DC spatial component). LMC spatial filtering

Bio-Inspired Target Detection
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dynamics are variable, dependent on overall light adaptation levels

[37]; however, our model parameters remain constant for

computational efficiency. The inhibitory signal is delayed prior

to the subtraction by application of a first-order low-pass filter

(LPF3, t= 2 ms), representing the time course of the amacrine cell

signal spread [38]. The LMC has band-pass temporal character-

istics, with low frequency roll-off below a few hertz and high

frequency at ,80–100 Hz, in light adapted conditions [39]. For

our model, the LMC signal is temporally filtered (R-HPF1) with a

‘relaxed’ first-order high-pass filter (one that passes a small DC

component of 10%). This filter is characterized in the Laplace

domain by the transfer function:

0:11 10tsz1ð Þ
tsz1ð Þ ð2Þ

where s is the Laplace variable and t= 40 ms. The LMC signal is

inverted, to replicate the hyperpolarizing response to luminance

increments observed in intracellular recordings [40].

Rectifying Transient Cell
Because electrophysiological data suggests that RTCs give little

sustained response, unlike LMCs (Figure 4A), the signal is passed

through an additional first-order high-pass filter (HPF3,t= 40 ms).

A half-wave rectification is performed to segregate ON and OFF

channels of the input waveform, with the negative phase inverted

in sign.

For each independent channel of the RTC, a signal represent-

ing an ‘adaptation state’ is formed by applying a nonlinear low-

pass filter to the input signal with a fast onset, slow decay

characteristic (Equation 3).

d=dt NLFf g~ X{NLFð Þ=t1 X{NLF§0ð Þ

~ X{NLFð Þ=t2 X{NLFv0ð Þ,
ð3Þ

X designates the input, NLF the filter output, and t1 is set to 1 ms

(LPFfast) and t2 to 100 ms (LPFslow). Such a filter is an approximation

to plausible biophysical mechanisms, such as an interneuron with a

long intrinsic membrane time constant and strong, ‘bursty’ inputs.

This fast depolarizing, slow repolarizing signal is subtracted from the

unaltered, pass-through version of the input signal.

In addition to this step, a second subtractive inhibition is applied

based on the average of the surrounding input signals of the same

channel polarity (surrounding ON subtractively inhibit the centre

ON channel and similarly for the OFF channels). This is based on

the surround inhibitory effect found in the ‘on-off’ cells [21].

Unlike the previous parameters in our model, we do not have a

physiologically derived estimate for the strength of this inhibitory

effect, and consider the scaling of the inhibitory signal a free

parameter (INH) in our modeling and simulations. Alteration of

this value can be used to tune the model to different size image

features. We include a neural delay, modeled by a first-order low-

pass filter (LPF4, t= 2 ms), which is applied to the averaged and

scaled surround inhibitory pathways.

The channels are then half-wave rectified to mimic a thresholded

response (a nonlinearity seen in many spiking neurons). The

resultant channel signals are passed through a ‘neural delay’

smoothing filter (t= 2 ms). This smoothing better represents the

temporal response dynamics seen in the physiological RTC.

The final stage of processing is a recombination of the ON and

OFF channels to form a single output corresponding to the

ESTMD response. The simplest operation to achieve this would

be a straightforward sum of the two output signals. However, we

consider an operation that enhances selectivity for small, dark

targets. A delay operator D[*], consisting of a low-pass filter

(LPF5), is applied to the OFF channel prior to recombination with

the undelayed ON channel. For generality, we took a phenom-

enological approach to this recombination allowing second-order

as well as linear interactions:

Output~a:ONzb:D OFF½ �zc:ON:D OFF½ � ð4Þ

In our simulations, we consider primarily the purely linear case

(c = 0), which we refer to as ‘RTC’, and the second-order case

(a = b = 0), referred to as ‘ESTMD’. Note the formal similarity of

the second-order structure to the correlational or Hassenstein-

Reichardt elementary motion detector [41]. However, in this case

the correlation operates on rectified signals of opposite polarity

from the same spatial location, rather than signals from spatially

neighboring locations. In this form, although tuned primarily to

small contrasting features, this rectification of polarities resembles

models proposed to explain selectivity for expanding edges in

Figure 4. Rectifying Transient Cells (Independent Adaptation). (A) Intracellular recording from a rectifying transient cell shows independent
adaptation to ‘on’ and ‘off’ contrast changes. Pulses of equal, but opposite, contrast polarity are of 5 ms duration and separated by varying intervals.
At a pulse interval of 30 ms (left trace), little adaptation can be seen (but the response to the first pulse is strongest). At 10 ms interval, temporal
adaptation limits the response until the polarity of the contrast reverses, which then produces an unadapted response. A single electrophysiological
recording is shown for clarity (from N = 5). The model version (B) output is similar, capturing the important functional characteristics of the RTC.
doi:10.1371/journal.pone.0002784.g004

Bio-Inspired Target Detection
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‘looming’ motion detectors such as in the locust LGMD/DCMD

[42,43].

Although STMDs respond better to black targets [9] and light

target sensitivity is not modeled here, a symmetric correlation

operation could be established for a white target detector by

interchange of the signal roles in Equation 4. This would provide

white target sensitivity by correlating a delayed ON channel with

an undelayed OFF channel. A detection mechanism for targets of

both contrast polarities (light and dark) would involve summing

these two versions or having any weighted combination of the

above terms (both linear and second-order).

Comparison of model responses to fly RTCs
We compare our recordings of the RTC in the medulla of the

blowfly to our modeled responses. The intracellular recordings

(Figure 4A) show independent adaptation to contrast increments

and decrements, as seen in ‘on-off’ type cells [17,19]. Figure 4A

shows an experiment with a train of contrast pulses at two different

frequencies. At 30 ms separation, the neuron recovers to produce

graded depolarization in response to each pulse. When the

separation is reduced to 10 ms, the adaptation suppresses the

response to the stimulus. However, when the contrast polarity is

reversed (from contrast increments to decrements), an unadapted

response is observed before the neuron again rapidly adapts to the

new polarity stimulus.

Temporal responsiveness
Although our model captures the basic behavior of the

biological RTC, the incorporation of an LMC-like input stage is

somewhat contradicted by earlier work suggesting the frequency

response (to sinusoidal stimuli) of ‘on-off’ units rolls off above

12 Hz [17], while the LMCs have a much higher corner frequency

[39]. Jansonius and van Hateren [17] suggested this apparent low-

pass characteristic is simply a result of the rapid adaptation that

occurs at higher stimulus frequencies (as seen in Figure 4A); it is

possible that the unadapted system has a much higher temporal

acuity than this result would suggest.

To test this hypothesis we used a ‘doublet’ stimulus consisting of

a pair of pulses (‘on’ followed by ‘off’). Whilst not strictly

containing energy at a single frequency, this stimulus allowed us

to construct transfer functions for the RTC to a single stimulus

cycle, thus avoiding the influence of adaptation. The response

power is calculated as the mean-square value until the neuron

returns to within 5% of the resting membrane potential. As can be

seen in our physiological data (Figure 5A, dashed line, squares),

the response of the medulla RTC to the doublet stimulus has a

peak at high frequency (,50 Hz). The RTC still responds with

85% maximum at 100 Hz, the highest frequency doublet that we

could generate on our 200 Hz stimulus display. The model RTC

(Figure 5A, dashed line) gives a similar temporal responsiveness.

The RTC frequency response is a good match for that obtained by

Fourier transforming the linear kernel for fly LMCs using white

noise stimuli (Figure 5A, solid line) [38]. Interestingly, if we

simulate the earlier experiments of Jansonius and van Hateren

[17] with a wide-field sinusoidal stimulus (Figure 5B, dashed line),

we obtain a curve that rolls off at a much lower frequency,

consistent with their experimental data (reproduced in Figure 5B,

solid line). Our model rolls off more sharply at low frequency,

likely due to the pure nature of our high-pass filter (HPF3) and

because the non-linearity introduced into their extracellular

recordings by the thresholding mechanism for spike generation

may lead to overestimation of weak responses. We conclude that

the apparent low-pass nature of the ‘on-off’ cell frequency response

was, as hypothesized, a result of adaptation [17], and that the

response to transient as opposed to stationary stimuli reflects a

much more rapid temporal response capability. Also, the inclusion

of an LMC-like input stage in our model is supported by the very

similar temporal characteristics of the LMC to the fly RTC.

Figure 5. Temporal Responsiveness. (A) The response of the physiological RTC to a stimulus doublet (2, 5, 6.6 Hz N = 2, no error bars; others N = 6
(flies) mean6SEM). This RTC transfer function peaks at ,50 Hz (dashed line, squares) and is still responsive at the highest stimulus frequencies, which
are limited by the CRT refresh rate. We simulate doublet input and show that the model RTC frequency response is comparable to the physiological
correlate (dashed line). The response to the doublet at the LMC stage of the model is also shown (dotted line). Frequency response properties of fly
LMCs obtained via white noise analysis [38] is also plotted for comparison (solid line). It should be noted that the RTC and LMC response
characteristics show a similar temporal responsiveness. (B) Previous analysis of ‘on-off’ units in the fly lamina [17] showed poor temporal
responsiveness (peak at ,6 Hz) (reproduced here, solid line) and our model shows a similar shift in response to the non-optimal sinusoidal stimulus
(dashed line).
doi:10.1371/journal.pone.0002784.g005
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Contrast Sensitivity Function
The high-pass nature of the RTC data (and as captured by our

model) we expect to form an ideal basis for a neural pathway for

small target detection as the signal from the passing target

boundaries provides a near optimal transient stimulus, with no

spatial antagonistic suppression that would occur with larger

features.

We determine the model response to a small target (0.8u60.8u)
as a function of target contrast and compare it with that induced

by wide-field flicker stimuli (Figure 6). As the target is below the

size of a single ommatidium, an effective neural contrast is

calculated by the convolution of the target with the optical

blurring filter (half-width 1.4u) [9]. Even very low contrast discrete

targets induce a model response over 10 times higher than that of

the wide-field flicker stimulus (compare at equivalent contrast

Figure 6A with 6B, dashed lines). We also plot reproduced STMD

responses to targets of varying contrast (Figure 6A, squares).

However, it is important to note that these responses were to

0.8u60.8u targets (50u/s) moving on complex moving backgrounds

(45u/s) [9].

Physiological data for the low contrast sensitivity of ‘on-off’ cell

responses to wide-field flicker [21] is well explained by the model

(Figure 6B). The divergence seen between the model and neuron

recordings at higher negative contrast is expected, since we make

no attempt to account for saturating nonlinearities in neural

components that would be expected in the biological system.

Interestingly, the RTC model stage also produces a reasonable

explanation for the near threshold contrast sensitivity of higher

order STMD neurons (Figure 6A, squares) [9].

Target height tuning
A feature of our ESTMD model is the inclusion of second-order

spatial (lateral) inhibition by neighboring RTCs and a temporal

cross correlation of the outputs of local ON and OFF pathways

which form a ‘matched filter’ for both the spatial and temporal

characteristics of small, moving features.

By analogy to models for direction-selective motion detectors

where wide-field optic flow can be deduced by summing output of

local elementary motion detectors, we use the term ‘elementary

small target motion detector’ (ESTMD) for this stage. Responses of

higher-order STMDs should be easily explained by simply

summing across a weighted array of such ESTMDs to produce

receptive fields of varying size (as observed in electrophysiological

recordings from the lobula) [9,10] whilst retaining position

invariant selectivity for small features [8]. To confirm whether

our model displays size selectivity, we estimate responses to

discrete moving targets of different length (i.e. extended orthog-

onal to the direction of motion). Figure 7 shows that the ESTMD

stage of our model provides an excellent fit to the data published

for lobula STMD neurons [10]. Note that while LMCs act to

maximize information to the higher order pathways by enhancing

edge-like features, the very sharp suppression of responses to

targets above a few degrees in size that characterizes both model

and neuron responses cannot be explained by the simpler spatial

antagonism of LMCs (Figure 7, dashed line).

Velocity tuning
An important aspect of the second-order configuration of our

model is its inherent similarity to a Reichardt correlator [41] such

that the velocity dependence in response to small moving targets is

essentially the same. The responses to a 0.8u60.8u moving target

(Figure 8) represents a typical velocity tuning curve as obtained

from a delay-and-correlate-type model. The position of the peak

response is dependent on the time constant of the delay filter D[*]

(LPF5). For comparison, we plot the velocity tuning curve seen in

STMD neurons [8]. We have not attempted to specifically fit this

data (nor in the target height tuning) and note that differences in

the broadness of the tuning curves could reflect additional

compressive nonlinearities which we have not attempted to

account for in this model.

Although the ESTMD model provides a good account for the

basic tuning properties of STMDs, it is not unique in this respect.

Figure 6. Contrast Sensitivity Function (Small Target and Wide-field). (A) The contrast sensitivity function is calculated from the peak model
responses to varying contrasts of small targets (0.8u60.8u) moving at 50u/s on a mean background (RGB 0.5) (dashed line). Also plotted (squares) are
physiological STMD responses to a 0.8u60.8u target, moving at 50u/s. However, this stimuli included a complex moving background (mean luminance
150 cd m22, 45u/s) [9]. For the model we measure contrast as the effective neural contrast. For the physiological data the contrast values represent
average Michelson contrasts as the targets transverse a complex moving background [9]. (B) Reproduced responses of ‘on-off’ units to wide-field
contrast steps of 500 ms duration (solid line) [17]. For comparison, we plot the model RTC responses to a simulation of this wide-field visual input
(dashed line). We note that low contrast sensitivity is observed in the model output due to spatial antagonistic interactions and this could be a
plausible explanation for low contrast sensitivity in the ‘on-off’ units. The model responses in (B) are less than 1/10 those seen in response to small
targets of equivalent contrast (A).
doi:10.1371/journal.pone.0002784.g006
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Other STMD models [11,12] should also be able to explain both

contrast sensitivity and velocity tuning. However, our key finding

is that the unique adaptive component of the RTC inputs to our

STMD can also explain the otherwise enigmatic finding that

STMDs can respond to features embedded in clutter, but without

relative motion cues [9].

Responses to targets in clutter
Figure 9 shows a single output row at each stage of the model, in

response to a panoramic image in which a small target is inserted

(the image row is delineated in Figure 2D). We selected this row to

illustrate the effect of the key stages of the model in enhancing

target responses, whilst rejecting other high contrast features.

Photoreceptor dynamics encode a large luminance range into

the limited dynamic range of the neuron [29,44]. Our inputs

have already emulated a similar process via a form of global gain

control inherent in digital camera processing (Figure 9A–B). The

LMC output (Figure 9C) with spatiotemporal high-pass filtering,

enhances contrast boundaries in both space and time. The OFF

fast temporal adaptation (Figure 9D, solid line) suppresses

textures and signals larger ‘breakthrough’ contrast changes. The

surround inhibition ensures that this effect is spatially localized.

Note that the response to the tree trunk (t = 1.1 s), which also has

a novel ‘off’ shortly followed by an ‘on’ contrast boundary is

suppressed as a consequence of second-order spatial inhibition

(Figure 9E, solid line). The ON channels (not shown) show similar

characteristics. Finally, the OFF channel (Figure 9F, solid line) is

temporally delayed and correlated with the undelayed ON

channel (Figure 9F, dashed line) to signal target-like events

(Figure 9G).

Figure 10 shows ROCs for the four panoramic images, at a

velocity of 90u/s. During the pseudo-random distribution, some

targets are scattered onto backgrounds of the same luminance (as

the target) such that that they lose all defining characteristics. In

image D (Figure 2), the most highly textured scene, it is difficult for

the human observer to detect the scattered targets. Image C is

extremely sparse and LMC filtering is enough for successful target

discrimination (Figure 10C). Across the varied scenes, both linear

(RTC) and quadratic (STMD) processing have improved the

discrimination of targets as revealed by the shift to the upper left

corner of the ROC curve (Figure 10 A–D). The limited number of

false positives in the final model output suggests that target-like

structures are rare in these natural image scenes.

These results show that a highly nonlinear filter (derived from

the plausible biological components) exploits the spatiotemporal

statistics of the moving target within its immediate surround. The

statistics required are as follows 1) a small duration of time

(,50 ms) in which contrast changes do not exceed that of the

upcoming target, therefore providing an unadapted ‘off’ phase.

This provides ‘distinctiveness’ to the start of the dark feature. 2) An

unadapted ‘on’ phase, which is inherent in the non-changing

texture of the dark target. 3) These same characteristics, i.e.

unadapted, opposite polarity, contrast changes, to not be present in

the immediate surround. If this third characteristic were relaxed,

the detector would be sensitive to a similar width/velocity profile

as the target, though not suppressed by the height of the feature,

i.e. the detector would also be stimulated by a vertical ‘bar’

stimulus.

Relative motion
Intuitively, the ESTMD model is responsive to the motion of

the contrast boundaries across the detector inputs. Relative motion

between target and background will have an effect on ESTMD

responses, as it alters the temporal statistics (dependent on

background velocity) that establish the adaptation states of the

independent channels. We tested this by varying the background

motion with a constant target velocity of 90u/s (Figure 11).

Depending on background speed, we varied initial background

position so that we could analyze target response at the same

spatial juxtaposition of target and background (target size of

1.6u61.6u). Hence, data for a background speed of +90u/s

Figure 7. Target Height Tuning. The curve shows model ESTMD
responses to targets of varying height (0.8u wide black targets on white
background, moving at 50u/s). Physiological data from STMD neurons in
the hoverfly for the equivalent target parameters and background is
reproduced [10]. The model is selective for targets of less than a few
degrees height with the suppression to the right of the peak determined
by the strength of the lateral inhibition between channels. The model
response to targets at the LMC stage (no units) shows that the responses
remain at maximum as the target is extended vertically (max height
shown of 10u), i.e. the LMC is not target selective. This highlights that a
second-order spatial antagonism is required for target selectivity.
doi:10.1371/journal.pone.0002784.g007

Figure 8. Velocity Tuning. Model ESTMD responses to black moving
targets (0.8u60.8u) on a white background at varied velocities is shown in
comparison to the physiological data of STMD neurons to the same visual
stimulus from hoverflies [8]. The model output exhibits typical velocity
tuning as observed in correlation-type motion detection mechanisms. The
tuning of the model parameters (particularly, the OFF delay filter time
constant) determines at which point the velocity response peaks. The
broadness of the tuning curve may be extended and shaped via the
addition of a final saturating nonlinearity, not included in this model.
doi:10.1371/journal.pone.0002784.g008
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effectively represents the scenario in the other ‘no relative motion’

panorama simulations. We repeated this test in 100 distributed

locations across the four panoramic images. We show that the

ESTMD target responses are robust across the tested range of

relative motions and the results confirm that the response

improves when there is some relative motion, reaching a peak

when the background speed is close to zero.

Discussion

By recording from a cell in the fly medulla (the RTC) we have

been able to determine their quick temporal responsiveness to

transient stimuli. This has provided parameters, such as

adaptation time constants, that form the basis of our target

detection model. We have compared responses of the model, e.g.

Figure 9. Sample Data Traces. The traces show the mode outputs at various stages of processing over the second complete revolution of the
scene (at 90u/s). The right hand trace shows a magnified version of the period between 1 and 2 seconds. The y-axes are unit-less model outputs. The
input intensity (A) is delineated in Figure 2D. Photoreceptor dynamics (B) encode a large luminance range into the limited dynamic range of the
neuron. The LMC (C) exhibits spatiotemporal high-pass filtering, enhancing contrast boundaries. The temporal adaptive mechanisms within the
independent channels suppress rapid texture variations but signal a novel contrast change (D). Surround antagonistic interactions limit the spatial
extent of this type of signaling (E) and a final linear or quadratic recombination of the channels (F) signals the presence of a dark moving target (G).
doi:10.1371/journal.pone.0002784.g009
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contrast sensitivity, height tuning, and velocity tuning, to those

observed in STMD physiological recordings and find that they are

well matched.

We have shown that linear systems analysis of steady-state

responses is not an appropriate method for characterization of the

relevant neural responses (Figure 5). In this case, when we consider

the quickly adapting transient component of the RTC signal, we

find the temporal responsiveness is well matched to presumed

early components of the visual system (the LMC). We also observe

that apparent contrast insensitivity of a neural system may be the

result of wide-field antagonistic interaction. In our modeling, due

to a neural delay in the surround interactions, the naturally

‘unrealistic’ wide-field flicker can transiently pass through the

system, however with low contrast sensitivity the result. In

comparison, the response to the limited spatial extent of a small

target is very contrast sensitive.

Larger wide-field STMD neurons display a position invariant

receptive field that typically spans many ommatidia [8]. This

presumably requires a pooling of the outputs of many subunits

from earlier stages of processing. In fact, because some STMD

neurons are weakly direction-selective [8–10], rather than a

summative pooling of ‘non-directional’ subunits, some type of

higher-order spatial facilitation may take place. Weak direction

selectivity could be built into our modeling via asymmetry in the

inhibitory surrounds or via a higher order spatial facilitation

during this pooling stage.

Unfortunately, RTC neurons are small and intracellular

recording times are limited in duration. We have, to date, not

been able to establish the morphology of the neuron via dye-filling

techniques nor can we examine more time intensive spatial

Figure 10. Natural Image Panoramas. Twenty targets (1.6u61.6u) pseudo-randomly scattered (26 trials) on four panoramic images with the
simulation run at a velocity of 90u/s. (A) Receiver Operating Characteristic (ROC) curves are shown for a scene with averaged natural statistics. The
addition of RTC-type processing (solid line, triangle) to the LMC (dashed line, square) shifts the ROC curve to the upper left, revealing enhanced target
discrimination. The quadratic (ESTMD) version of the model (solid line, diamond) shows further improvement via the multiplicative interaction of the
delayed OFF and undelayed ON channels. (B) The LMC stage has a large number of false positives, due to high contrast, man-made features (which
the RTC-type processing can discriminate). (C) This image is sparse so the targets can be readily discriminated by the LMC processing alone. (D) A
highly textured scene, with many scattered targets losing defining characteristics, however, the target discrimination is still improved. Error bars are
within symbol representation, therefore removed for clarity.
doi:10.1371/journal.pone.0002784.g010

Figure 11. Relative Motion. Results of simulations carried out for 25
targets in each of the 4 images, where background speed and direction
was varied. Target speed was constant at 90u/s (left to right, as
indicated by pictograms). Data are mean6SEM, N = 100.
doi:10.1371/journal.pone.0002784.g011
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characterization stimuli. Nevertheless, we are confident from our

dissection technique and precise control of the location of the

pipette that our regular recordings from the RTC are from the

medulla. However, we cannot be certain if they are intrinsic to the

medulla, or if they reside elsewhere and project to, from, or via the

medulla. There is the possibility that they may be the termination

of the fibers identified by Arnett [15,16] or a later postsynaptic

element that has inherited the properties as seen in the projections

from the lamina. Although our biological investigation of the RTC

is limited, the aspects of computation that form the basis for our

small target modeling has been well established in the work of

Jansonius and van Hateren [17], Osorio [19] and now again in

this present research.

Conclusion
Our approach to modeling has provided a solution to the

initially perplexing issue of how the STMD neuron responds

robustly to target motion, even when there is no relative motion

cue of the target to the background [9]. We have seen that this

problem is solved by incorporating properties of the rectifying

transient cell in the target detection pathway. This is an attractive

solution, as our highly nonlinear matched filter is computationally

less intensive than complex segregation of transparent motion

fields, required for relative motion calculations.
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